
Operator Overloading

Introduction
 Operators restricted to be overloaded.

 Unary operators

 Binary operators

 Overloading unary operators

 Overloading binary operators.

Operators
 Assignment operator is defined for objects of the

same type. Default assignment operator does a
bitwise copy.

UnitVector v1, v2;
…
v2 = v1;

 Other operators are not predefined
 arithmetic, relational, logical, input and output

Overloading Operators
 Allows class types to be used in the same way that a

predefined/built-in data type is used.

 Definitions for operator functions are included in a class
definition in the same way as member functions

 keyword operator is part of the name of the function.

 the name of the function includes one of the predefined
C++ operators

 Only predefined operators may be overloaded

 All predefined operators except(. :: .* ?: sizeof) may be
overloaded.

Complex Number Class
A complex number is a number that has two components;

the real component and the imaginary component.

 a + bi

Arithmetic is defined as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) - (c + di) = (a - c) + (b - d)i

(a + bi) * (c + di) = (ac - bd) + (ad + bc)i

(a + bi) / (c + di) = (ac + bd) / (c**2+d**2) +

 [(bc -ad) /(c**2+d**2)]i

Class Declaration
class complex
{
 public:
 complex();
 complex(double,double);
 double getReal() const;
 void setReal(double);
 complex operator+(complex) const;
 complex operator-(complex) const;
 complex operator*(complex) const;
 complex operator/(complex) const;
 private:
 double real, imag;
};

Implementation - constructors
complex::complex():real(0),y(0)

{ //default constructor

}

complex :: complex(double r, double im)

{

 real = r;

 imag = im;

}

Implementation –
Overloaded Operators

complex complex::operator+(complex c) const

{

 complex temp;

 temp.real = real + c.real;

 temp.imag = imag + c.imag;

 return temp;

}

Implementation - Continued
complex complex::operator/(complex c) const

{

 complex temp;

 temp.real = (real*c.real + imag*c.imag)/

 (pow(c.real,2) + pow(imag,2));

 temp.imag = (imag*c.real - real*c.imag)/

 (pow(c.real,2) + pow(imag,2));

 return temp;

}

Practice! – Implement the * operator
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i

complex complex::operator*(complex c) const

{

 complex temp;

 temp.real = real*c.real – imag*c.imag;

 temp.imag = real*c.imag + imag*c.real;

 return temp;

}

Test Program
 complex c1, c2, c3; //declare three complex variables

 cin >> c1; //we can overload the >> operator

 cin >> c2;

//test addition

 c3 = c1 + c2; // using overloaded operator +

 cout << endl << "c1 + c2 is ";

 c3.print(cout);

//test division

c3 = c1 / c2; // using overloaded operator /

cout << endl << "c1 / c2 is ";

cout << c3;

cout << endl; //we can overload the << operator

Sample Output
Using the following input:

4.4 1.5

3.5 -2.5

The expected output from our test program will

be:

c1 + c2 is 7.9 + -1i

c1 / c2 is 0.62973 + 0.878378i

Matrix Addition
Matrix operator+(const Matrix& rhs) const;

Prototype for member function definition.

//Member function definition:

Matrix Matrix::operator +(const Matrix& rhs)

const

{

 assert(row == rhs.row && col == rhs.col);

 Matrix temp(rhs);

 for(int i=0; i<row*col; i++)

 {

 temp.pMat[i]+=pMat[i];

 }

 return temp;

}

 //Using operator:

Matrix a(4,4), b(4,4), c(4,4);

//…

a = b+c;

a = b.operator+ (c); //same as above

How many times is the

copy constructor called?

How many times is the

destructor called?

Matrix Matrix :: operator ++(){ //prefix

 for(int i=0; i<row*col; i++) {
 ++pMat[I];
 }

 return *this;

}

Matrix Matrix :: operator ++(int){ //postfix
 Matrix temp = *this;
 for(int i=0; i<row*col; i++) {
 ++pMat[i];

 }

 return temp;
}

Note: compiler generates the integer argument to
force postfix instance to be called.

Error Checking on input operator

If your input fails because of incorrect format, your

function should mark the state of the istream as bad

is.clear(ios::badbit | is.rdstate())

clear resets entire error state to zero

clear(ios::badbit) clears all and sets badbit

is.rdstate() returns the previous state of all bits

Statement sets the bit vector to the OR of badbit with

previous state

