

Introduction

Operators restricted to be overloaded.
Unary operators
Binary operators

Overloading unary operators

Overloading binary operators.

Operators

Assignment operator is defined for objects of the
same type. Default assignment operator does a
bitwise copy.

UnitVector vi, v2;

V2 = VI;
Other operators are not predefined
e arithmetic, relational, logical, input and output

Overloading Operators

Allows class types to be used in the same way that a
predefined/built-in data type is used.

Definitions for operator functions are included in a class
definition in the same way as member functions

e keyword operator is part of the name of the function.

e the name of the function includes one of the predefined
C++ operators

Only predefined operators may be overloaded

All predefined operators except(. :: .* ?: sizeof) may be
overloaded.

Complex Number Class

=] A complex number Is a number that has two components;
the real component and the imaginary component.

a+ bi
=] Arithmetic is defined as follows:

(@+b)+(c+di)=(a+c)+ (b+di

(@a+bi)-(c+di)=(a-c)+(b-d)i

(a + bi) * (c +di) =(ac - bd) + (ad + bc)i

(a+bi)/(c+di)=(ac + bd) / (c**2+d**2) +
[(bc -ad) /(c**2+d**2)]i

Clas;%dapaﬂgn
class complex
{

public:
complex();
complex(double,double);
double getReal() const;
void setReal(double);

private:
double real, imag;

¥

complex::complex():real(0),y(0)
{ //default constructor

}

complex :: complex(double r, double im)

{

real =r;
Imag = Im;

Implementation =" ==
Overloaded Operators

complex complex::operator+(complex c) const
{

complex temp;

temp.real = real + c.real,

temp.imag = imag + c.imag;

return temp;

... e

—_—

complex complex::operator/(complex c) const

{

complex temp;
temp.real = (real*c.real + imag*c.imag)/

(pow(c.real,2) + pow(imag,2)),
temp.imag = (imag*c.real - real*c.imag)/

(pow(c.real,2) + pow(imag,2)),
return temp;

Practicel—=Implement the *-operatc
—(a + bi) * (c + di) = (ac - bd) + (ad + bc)i

-

_/

- Test Program

complex cl, c2, c3;
cin >> cl;
cin >> c2;

[[test addition
c3=cl+c2Z;
c3.print(cout);

/Itest division

ca=cllc2;

cout << c3;
cout << endl;

//declare three complex variables
//we can overload the >> operator

// using overloaded operator +

cout<<endl<<"cl+c2is"™

// using overloaded operator /

cout<<endl <<"cl/c2is"™:

//we can overload the << operator

e i

Sample OQutput

=lUsing the following input:

4.41.5
3.9 -2.5

=I'The expected output from our test program will
be:

cl+c2i1s7.9+ -1i
cl/c2i1s0.62973 + 0.878378i

\//
= o
Matrix Addition

Matrix operator+(const Matrix& rhs) const;

Prototype for member function definition.

[IMember function definition:

Matrix Matrix::operator +(const Matrix& rhs)

const

{

assert(row == rhs.row && col == rhs.col);

Matrix temp(rhs);
for(int i=0; i<row*col; i++)
{
temp.pMat][i]+=pMat[il;
}

return temp;
}
//Using operator:
Matrix a(4,4), b(4,4), c(4,4);
His:
a = b+c;

How many times is the
copy constructor called?

How many times is the
destructor called?

a = b.operator+ (c); /[same as above

Matrix Matrix :: operator ++(){ //prefix
for(int i=0; i<row*col; i++) {
}++pMat[I]

return *this;

Matrix Matrix :: operator ++(int){ //postfix
Matrix temp = *this;
for(int i=0; i<row*col; i++) {
++pMat][i];
}

return temp;

}

Note: compiler generates the integer argument to
force postfix instance to be called.

... g

=

Error Checking on input operator

=I1f your input fails because of incorrect format, your
function should mark the state of the istream as bad

Is.clear(ios::badbit | is.rdstate())
=lclear resets entire error state to zero
Slclear(ios::badbit) clears all and sets badbit
Slis.rdstate() returns the previous state of all bits

=] Statement sets the bit vector to the OR of badbit with
previous state

