
Operator Overloading

Introduction
 Operators restricted to be overloaded.

 Unary operators

 Binary operators

 Overloading unary operators

 Overloading binary operators.

Operators
 Assignment operator is defined for objects of the

same type. Default assignment operator does a
bitwise copy.

UnitVector v1, v2;
…
v2 = v1;

 Other operators are not predefined
 arithmetic, relational, logical, input and output

Overloading Operators
 Allows class types to be used in the same way that a

predefined/built-in data type is used.

 Definitions for operator functions are included in a class
definition in the same way as member functions

 keyword operator is part of the name of the function.

 the name of the function includes one of the predefined
C++ operators

 Only predefined operators may be overloaded

 All predefined operators except(. :: .* ?: sizeof) may be
overloaded.

Complex Number Class
A complex number is a number that has two components;

the real component and the imaginary component.

 a + bi

Arithmetic is defined as follows:

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi) - (c + di) = (a - c) + (b - d)i

(a + bi) * (c + di) = (ac - bd) + (ad + bc)i

(a + bi) / (c + di) = (ac + bd) / (c**2+d**2) +

 [(bc -ad) /(c**2+d**2)]i

Class Declaration
class complex
{
 public:
 complex();
 complex(double,double);
 double getReal() const;
 void setReal(double);
 complex operator+(complex) const;
 complex operator-(complex) const;
 complex operator*(complex) const;
 complex operator/(complex) const;
 private:
 double real, imag;
};

Implementation - constructors
complex::complex():real(0),y(0)

{ //default constructor

}

complex :: complex(double r, double im)

{

 real = r;

 imag = im;

}

Implementation –
Overloaded Operators

complex complex::operator+(complex c) const

{

 complex temp;

 temp.real = real + c.real;

 temp.imag = imag + c.imag;

 return temp;

}

Implementation - Continued
complex complex::operator/(complex c) const

{

 complex temp;

 temp.real = (real*c.real + imag*c.imag)/

 (pow(c.real,2) + pow(imag,2));

 temp.imag = (imag*c.real - real*c.imag)/

 (pow(c.real,2) + pow(imag,2));

 return temp;

}

Practice! – Implement the * operator
(a + bi) * (c + di) = (ac - bd) + (ad + bc)i

complex complex::operator*(complex c) const

{

 complex temp;

 temp.real = real*c.real – imag*c.imag;

 temp.imag = real*c.imag + imag*c.real;

 return temp;

}

Test Program
 complex c1, c2, c3; //declare three complex variables

 cin >> c1; //we can overload the >> operator

 cin >> c2;

//test addition

 c3 = c1 + c2; // using overloaded operator +

 cout << endl << "c1 + c2 is ";

 c3.print(cout);

//test division

c3 = c1 / c2; // using overloaded operator /

cout << endl << "c1 / c2 is ";

cout << c3;

cout << endl; //we can overload the << operator

Sample Output
Using the following input:

4.4 1.5

3.5 -2.5

The expected output from our test program will

be:

c1 + c2 is 7.9 + -1i

c1 / c2 is 0.62973 + 0.878378i

Matrix Addition
Matrix operator+(const Matrix& rhs) const;

Prototype for member function definition.

//Member function definition:

Matrix Matrix::operator +(const Matrix& rhs)

const

{

 assert(row == rhs.row && col == rhs.col);

 Matrix temp(rhs);

 for(int i=0; i<row*col; i++)

 {

 temp.pMat[i]+=pMat[i];

 }

 return temp;

}

 //Using operator:

Matrix a(4,4), b(4,4), c(4,4);

//…

a = b+c;

a = b.operator+ (c); //same as above

How many times is the

copy constructor called?

How many times is the

destructor called?

Matrix Matrix :: operator ++(){ //prefix

 for(int i=0; i<row*col; i++) {
 ++pMat[I];
 }

 return *this;

}

Matrix Matrix :: operator ++(int){ //postfix
 Matrix temp = *this;
 for(int i=0; i<row*col; i++) {
 ++pMat[i];

 }

 return temp;
}

Note: compiler generates the integer argument to
force postfix instance to be called.

Error Checking on input operator

If your input fails because of incorrect format, your

function should mark the state of the istream as bad

is.clear(ios::badbit | is.rdstate())

clear resets entire error state to zero

clear(ios::badbit) clears all and sets badbit

is.rdstate() returns the previous state of all bits

Statement sets the bit vector to the OR of badbit with

previous state

